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Abstract

We consider invariant symplectic connection®n homogeneous symplectic manifoldg, w)
with curvature of Ricci type. Such connections are solutions of a variational problem studied by
Bourgeois and Cahen, and provide an integrable almost complex structure on the bundle of almost
complex structures compatible with the symplectic structurd. i compact with finite fundamen-
tal group then M, w) is symplectomorphic t@®, (C) with a multiple of its K&hler form and’ is
affinely equivalent to the Levi-Civita connection. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The space of curvature tensors of symplectic connections on a symplectic manifold
(M, w) of dimension 2 > 4 splits under the action of the symplectic grodp2s, R)
as a direct sum of two subspaces on wHigi2», R) acts irreducibly [1,5,7]. For a given
curvature tensaR we shall denote by andW its projections onto these two subspaces. The
E-component is determined by the Ricci tensor of the connection. Whé#itbemponent
vanishes identically we say that the curvature is of Ricci type.
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The motivation for looking at such connections is twofold. They provide critical points
of a functional which has been introduced in [1] to select preferred symplectic connections,
andW = Qs the integrability condition for an almost complex structure which a symplectic
connection determines onthe total space of the buh@, ) of almost complex structures
compatible with the symplectic structure [6,8,9].

The simplest framework in which one can study #iie= 0 condition is the compact
homogeneous one. Our main result is the following theorem.

Theorem 1. Let(M, w) be a compact homogeneous symplectic manifold with finite funda-
mental group. If M, w) admits ahomogeneous symplectic connecianth Ricci-type cur-
vature then M, w) is symplectomorphic t@, (C), wg), wherewg is a multiple of the Kéhler
form of the Fubini—Study metric, andis affinely equivalent to the Levi-Civita connection

When we do not impose any restriction on the fundamental group, we were only able to
prove the following theorem.

Theorem 2. Let (M, w) be a compact homogeneous symplectic manifold of dimension 4.
If (M, w) admits a homogeneous symplectic connectionith Ricci-type curvature then
V is locally symmetric

In Section 2 we prove some general identities which hold for any symplectic connection
with Ricci-type curvature. In Section 3 we deduce some easy consequences of these iden-
tities in the homogeneous (respectively compact homogeneous) framework. In Section 4
we prove Theorem 1 in the simply connected case and show how to extend this to a finite
fundamental group. Finally, Section 5 is devoted to the proof of Theorem 2.

2. Ricci-type curvature
Let (M, w) be a symplectic manifold and be a symplectic connection (a torsion-free
connection oimM with Vo = 0). The curvature endomorphisiof V is defined by
R(X,Y)Z = (VxVy — VyVx — Vix y]Z
for vector fieldsX, Y, Z on M. The symplectic curvature tensor
R(X,Y;Z,T)=w(RX,YV)Z,T)

is antisymmetric in its first two arguments, symmetric in its last two and satisfies the first
Bianchi identity

f R(X,Y;Z,T) =0,
X,Y,Z

where§ denotes the sum over the cyclic permutations of the listed set of elements. The
Ricci tensorr is the symmetric 2-tensor

r(X,Y) = TracelZ — R(X, Z2)Y].
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R also obeys the second Bianchi identity
7{ (VxR)(Y,Z) = 0.
XY, Z
The Ricci partE of the curvature tensor is given by

EX,Y;Z,T) = 2(n_—i'1)[2a)(X, Vr(Z, T)+w(X,Z2)r(Y,T)

Yo (X, T)yr(Y,Z2) -, 2)r(X,T) — o, T)r(X,Z2)]. (2.1)

The curvature is of Ricci type wheR = E.

Lemma 1. Let (M, w) be a symplectic manifold of dimensigm > 4. If the curvature of
a symplectic connectiow on M is of Ricci type then there is a 1-fomrsuch that

(Vxr)(Y, Z) = (X, Yu(Z) + (X, Z)u(Y)). (2.2)

2n+1

Conversely, if there is such a 1-fomrthen theW part of the curvature satisfies

f (VxW)(Y, Z; T, U) = 0. 2.3)
X,Y,Z

Proof. When the curvature is of Ricci type, the second Bianchi identityRidrecomes
an identity forE. Sincew is parallel, covariantly differentiating Eq. (2.1) and summing
cyclically, we get

0= % 20, 2)(Vxr)(T,U) + oY, T)(Vxr)(Z,U)
X.,Y,Z
+o (Y, U)(Vxr)(Z,T) — o (Z, T)(Vxr)(Y,U) —w(Z,U)(Vxr)(Y,T). (2.4)

Choose local frameld/, }2" |, {W,}2*, onM suchthato(V,, Wj) = Sap. Substitute = V,,

a=1’ =

andZ = W, in Eqg. (2.4) and sum over to obtain
0 =2n(Vxr)(T,U) — (Vrr)(X,U) — (Vyr)(X, T) + (X, T)Z(Vwar)(Va, U)
+o(X, U)Y (Vw,r)(Va, T). (2.5)
If we cyclically permuteX, T, U in Eq. (2.5) and sum we get
(2n -2 (Vxr)(T,U) =0, (2.6)
X, T,U

and since: > 2 we have

,(f (Vxr)(T,U) =0. (2.7)
X.T.U
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Using Eq. (2.7) in Eq. (2.5) gives

2n + D(Vxr)(T, U+ (X, T)Y (V") (Va, D) +o(X, U) Y (Vi,r)(Va, T)=0,

which is of the desired form if

w(X) ==Y (Vw,r)(Va, X).

a

Conversely, if one substitutes (2.2) into the covariant derivative of (2.1) and cyclically
sums then one obtains

7{ (VxE)(Y,Z,T,U)=0.
XY,z
Combining this with the second Bianchi identity gives the second part of the Lemiia.

Corollary. A symplectic manifold with a symplectic connection whose curvature is of Ricci
type is locally symmetric if and only if the 1-fommdefined in the Lemma, vanishes

Remark 1. It will be useful to have an equivalent form of formula (2.2). Denotedbthe
linear endomorphism such that
r(X,Y) = w(X,AY). (2.8)

The symmetry of is equivalent to saying that is in the Lie algebra of the symplectic
group ofw. Denote byi the vector field such that

u=io, (2.9)

then (2.2) is equivalent to

2n+1

Lemma 2. Let (M, w) be a symplectic manifold with a symplectic connectionwith
Ricci-type curvature. Then, keeping the above notation, the following identities hold

1. There is a function b such that

1+2n
-
2(1+n)

+ bw, (2.11)

wherer@ is the 2-form
PX,¥) = (X, A2Y), 2.12)
2. The differential of the function b is given by

db =

i (2.13)
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3. The covariant differential odlb is given by

1 1 1+2n 3
Vdb= — |-~ oD o], 2.14
1—|—n|: 112" %" " 2a+n ] (2.14)
where
® 3
P X, Y) = o(X, A3Y). (2.15)

Proof. We can compute the action of the curvature on endomorphisms in two different
ways. On the one hand it is

R(X,Y)-A=[R(X,Y),A] = R(X,Y)A — ARX, Y)
___1 2y ) _ 2
— 2(n+1)[X®w(A Y,) - Y ®@w(A?X,.)
+A%Y @ w(X,.) — A’X @ w(¥, .)].

On the other hand the curvature is of Ricci type so that (2.10) gives

R(X,Y) A= [X® Vyu —Y ® Vyu+ Vyi @ o(X,.) — Vxi @ o(¥, .)].

2n+1
If we define an endomorphisi® of TM by

2n+1

= A%Y + Vyi,
2y T

then equality of the two right-hand sides yields
XQ®wBY,.)—Y®wBX.) +BY®w(X,.) —BX®w(,.) =0,
whose only solution is
B =bld.

This gives

2n+1
2(n +1)

which is Eq. (2.11).
Antisymmetrising (2.11) we get

Vyu = w(A%Y, ) + bo(Y, ),

2n+1©

du = — r + 2bw.

n+1
Taking the exterior derivative gives

2n+1 2

0= dr +2dbh A w.
n+1
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But

d(rz)(x, Y, Z) =7§ w(VxA%Y,Z) = —

oUu(ANYX+ow (X, AV)u, Z)
X.v.Z 2n + 1¢;(,Y,Z

+o(Y)AX+ (X, Y)Ai, Z) = y§ (X, Y)r(i, Z).
X,Y,Z

2n+1
Substituting

1 @, )+db|Aw=0
— 1r u, . w =0,
and in dimension 4 or higher this implies

db =

n_i_lr(u’ ')7

which is (2.13). Covariantly differentiating

1
(Vx db)(Y) = n—H[(VXr)(ﬁ, Y)+r(Vxu, Y)]

1 2n+1
T n+1l1+42n 2(n+1)

which is (2.14). O

o(X, Wu¥) +r <— A%X +bX, Y)] )

3. Homogeneous framework

Assume(M, w) is aG-homogeneous symplectic manifold avids a G-invariant sym-
plectic connection with Ricci-type curvature Nfis not locally symmetric, th&-invariant
1-formu is everywhere different from zero and the functiois alsoG-invariant and hence
constant. Putting these two facts into (2.13) we seertlaata bilinear form is necessarily
degenerate

r(u,.) =0. (3.2)
Also (2.14) implies
1+2n @

1
= 2
2n+1u®u+2(1+n)r br =0, (3.2)
or equivalently
_ 1+2n 4
2n+1u®u—2(1+n)A +bA=0. (3.3)
Applying A to (3.3) and using (3.1)
— A" +bA°=0. 3.4
2(1+n) * (34)

It follows that the only possible non-zero eigenvaluesicire +./(2(1 + n)/(1 + 2n))b
and so are real or imaginary.
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Lemma 3. If (M, w) is a compact homogeneous symplectic manifold admitting a homo-
geneous symplectic connecti@rwith Ricci-type curvature which is not locally symmetric
thenb = 0.

Proof. Recall that for any vector fiel&, Cartan’s identity gives

div X" E' Ly = nd((:(X)w) A "),

and

Lxo" =(Lx — V)" =n@(V-X,)+o(,V-X) A"

so that

divX = TracelZ — VzX].

In particular, by (2.11)

2n+1

—— "~ TraceA? + 2nb.
2(n +1) *

divii =

G-invariance implies that di¥ is constant. ButM compact with no boundary implies
[,diviie™ = 0 since the argument is exact; hence the constant is zero. Thus

Zn+1

=" "~ TraceA?
dn(n+1)

On the other hand, (3.4) implies th4f is a multiple of a projection and with symplectic
this has even rankz2say; using (3.1) we geti2< 2n. Thus

TraceA? = 4pb +n)
1+2n
o)
_ 2n+1 . 4pb(1+n) £b
dn(n + 1) 1+ 2n n
and hencé = 0. O

It follows that A% = 0 s0A is nilpotent; moreover (3.3) tells us tha® has rank 1.

Lemma 4. Let(M, w) be a four-dimensional homogeneous symplectic manifold admitting
a homogeneous symplectic connectiorwith Ricci-type curvature which is not locally
symmetric. Let A be the endomorphism associated to the Ricci tensor. Then

1.
2.
3.

either A is nilpotentb # 0, A% = 0, and A has rank 1 at any point

or Ais nilpotent » = 0, and A2 has rank 1 at any point

or A has a non-zero eigenvaluelse: 0. Then A admits a pair of non-zero eigenvalues of
opposite sign (real or imaginary) with multiplicity 1 and 0 is an eigenvalue of multiplicity
2 at any point. Furthermore, A has necessarily a nilpotent.part
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Proof. The dimension—at any point € M — of the generalised 0 eigenspacesis
even and non-zero, so is 2 or 4. If it is 4 tharis nilpotent andA* = 0 in dimension 4.
Thus, by (3.3)bA2 = 0. If b # 0 thenA2 = 0 so, by (3.4),4 has rank 1 at any point.
Otherwiseb = 0 andA? has rank 1 at any point.

When the generalised 0 eigenspabg is two-dimensional at any point, then
+/ 21+ n)/(1+ 2n))b are eigenvalues with multiplicity 1. Choose a globally defined
vector fieldv € Vp so thatw (v, i) = 1. SetAv = pi. Then

1+2n
2(1+n)

Vx (Av) = Vy(pit) = (Xp)ii + p (— A2X + bX) :

but it is also equal to
1
Vx(Av) = (VxA)v + A(Vxv) = —H—ZH(XU(U) +aw(X,v)) + A(Vxv).

Observe thab (A2X, i) = w(A(Vxv), i) = 0, so that

pw(bX i) =a)(— u(v)X, ﬁ) w(X, u).

T 1t+2n
Hencepb = 1/(1 + 2r) which implies thatp # 0. ThusA has a nilpotent part. O

1+2n

4. Proof of Theorem 1

We first prove Theorem 1 in the simply connected case. It is standard that a compact
simply connected homogeneous symplectic manifdifl ») is symplectomorphic to a
coadjoint orbit of a simply connected compact semi-simple Lie g@uuch a Lie group
G is a product of simple groups and the orbit is a product of orbits. We may throw away any
factors where the orbit is zero-dimensional as the remaining group will still act transitively.
A G-invariant symplectic connectio¥ on such an orbit is compatible with the product
structure [2]. If the curvature oV is of Ricci type, then it was shown in [3] that the
curvature is zero whetW, w, V) is a product of more than one factor. But a non-trivial
compact coadjoint orbit of a simple Lie group does not admit a flat connection since it has
a non-zero Euler characteristic. It follows that we can assGhie simple and M, w) is
a coadjoint orbi{ @, »®) with its Kirillov—Kostant—Souriau symplectic structure and with
an invariant symplectic connectidnwith curvature of Ricci type.

Further, the Euler characteristic of such an orbit is non-zero. If the vectorifieldre
non-zero, then invariance would imply that itis everywhere non-zero and this cannot happen.
Thusi = 0 and henc is locally symmetric Y R = 0).

Pick a pointg € O and construct a symmetric symplectic trigleo, §2) as follows: Let
a={Rg(X,Y) € End(T;,0)|X, Y € T;, O} andl = T, O @ a. The bracket is defined by

[X.Y] =R:((X,Y), X,Y €TxO, (4.2)
[B,X] =BX Bea XeT;0, 4.2)
[B,C]=BC—-CB, B,C€aq, 4.3)
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o by

g = _IdTgOO (&) |da,
and$2 by

QX +Y, X' +Y)=w(X, X)), X, X' €Ty, Y, Y €a.

Lemmab. (I, o, £2) is, indeed, a symmetric symplectic triple

Proof. There are two things to check to see thigta Lie algebra. Firstly, that the brackets
defined above belong to The only ones in doubt are the brackets of two elements of
Butais in fact the linear infinitesimal holonomy. This follows since the latter is spanned by
the values of the curvature endomorphism and its covariant derivatives. The latter vanish
by the local symmetry condition.

The second thing to check is the Jacobi identity. Obviously this holds if all three elements
are ina since this is a Lie algebra. If all three arefig O then [X, [Y, Z]] = —Rg, (Y, 2)X
and the Jacobi identity is satisfied for these elements by the first Bianchi identity. When one
element is inl;, O and two ina we have

[X,[B,Cl1 +[B.[C, X]] +I[C,[X, B]] = —[B, C]X + BCX— CBX=0.
Finally, if two elements are iff, O and one im we have

[X,[Y, B]] +[Y,[B, X]] +[B,[X, Y]]
= —Rey (X, BY) — Ry (BX, Y) + BRey (X, ¥) — Rey (X, Y)B = (B - Rey)(X. Y),

whereB - R¢, denotes the natural action of the holonomy Lie algetwa curvature tensors.
ButVR =0ifandonlyifB- Rs, =0VB € a.
The other two properties follow immediately from the definitions. O

If L is the simply connected Lie group associatetiandK the Lie subgroup associated
to the subalgebra then K is the connected component of the fixed point set of the auto-
morphism ofL induced bye andM1 = L/K is a simply connected symmetric space.
induces a symplectic forme1 on My which is parallel for the canonical connecti®n.

Consider the pointgg € M = O and the pointty; = eK € Mj. There is a linear
isomorphismp from the tangent spack, M to the tangent spacg, M1 so that

¢(Ro(X,Y)Z) = R1(¢pX, pY)PZ.

This implies [4, p. 259, thm. 7.2] that there exists an affine symplectic diffeomorphism
of a neighbourhood/ of £y in O onto a neighbourhoot; of §1 in M1 such that),, = ¢.
Both (0, w?, V) and(M1, w1, V1) are real analytic, as ig, andO is simply connected
whilst V1 is complete. Hence [4, p. 252, thm. 6.1] there exists a unique affing/map —
My suchthai} | U, = ¥.This mapy is symplectic since itis an analytic extension of the map
¥ which is symplectic. Symplectic maps are immersions, and hence local diffeomorphisms
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when the dimensions are equal as they are in this case. Hef@@gis open. On the other
hand,© is compact, sa/ () is compact and thus closed. Henkss surjective. It follows
that M1 is compact.

From the preceding arguments we see tht, w1, V1) is a compact simply connected
symmetric symplectic space whose curvature is of Ricci type. The only such sffac¢€)s
with a multiple of its standard Kéahler formg and the Levi-Civita connectioRg of the
Fubini—Study metric. Sinc® and M1 are both simply connected they are diffeomorphic
and hence we have proved Theorem 1 in the simply connected case.

Next we consider the case whei has a finite fundamental grougM, w) is
G-homogeneous symplectic with@-invariant symplectic connectiowW with curvature
of Ricci type. Then the simply connected covering spités compact and carries such
data®, V for the simply connected covering groap

It follows that (M, &, V) is diffeomorphic to(P, (C), wo, Vo) and hence tha¥ is dif-
feomorphic toP, (C)/I", whereI" is a discrete subgroup &fU(n + 1) acting properly
discontinuously ot (C). But non-trivial elements d?U(n + 1) always have fixed points,
so I must be trivial. This proves Theorem 1.

5. Proof of Theorem 2

We now proceed to give the proof of Theorem 2 indicating along the way why we restrict
ourselves to dimension 4 and why we only obtain a local result.

Recall that wher{M, ») is homogeneous and admits a non-locally symmetric invariant
symplectic connection with Ricci-type curvature we have the non-zero vectoi:fehdl
the Ricci endomorphism satisfies

_ 1 1+2n 4 1+2n , 2
Au =0, mu@u—mA +bA=0, mA — bA°=0.
(5.1)

Furthermore, ifM is compact Lemma 3 tells us that= 0 so thatA* = 0, andA3 has
rank 1:

3 21+n) _

The 1-formu is everywhere non-zero so there is a globally defined vectordieldth u (e1)
everywhere# 0. The vector fieldsy, eo = Aer, e3 = A2e1, es = A3eq form at each point
x € M a basis of a four-dimensional subspageof the tangent spack, M. Furthermore,
by Eg. (5.1)

2(1+n)

= mu(el)ﬁ

e4

If we choose the vector fieleh so thatw(e1, e4) = € with €2 = 1, we get—(2(1 + n)/
(1 + 2n)?)(u(e1))? = € so thate = —1 and(u(e1))? = (1 + 21)?/2(1 + n) so that
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i = u(er)eq. Remark that we can always assume thét;, e2) = 0 (by adding toe; a
multiple ofe3). So the symplectic form restricted 1§ writes in the chosen basis

0 0 0 -1
0O 0 1 O
0 -1 0 O
1 0 0 O

The tangent space at each point M writes

M=V, &V,

whereV, is thew, -orthogonal toV,; itis stable unden and, sinced® has rank 143|y, = 0
but this is not enough to describe the behavioud an V.

From now on, we restrict ourselves to the four-dimensional case. We define 1-forms

o, B, v, 8 such that

Vyer = a(X)e1 + f(X)ez2 + y(X)e3 + §(X)es.

Using formula (2.10) foV A (i.e. VxA = (—1/2n+ 1)) (X Q u + u(e1)ea ® i (X)w)) we

obtain
v —u(e1) 1,
xe2 = Zn—HX Ol(X)
u(el)
+ (ﬁ(X) n+1 )
Vyes = ;n”(fll)x (a(X)
\V _ —u(e1) g
xe4 2n+1X e3+ | a(X) —

u@ﬁ )e
n+ 1 2

( 2u (e1) X4> e

u(e1)
2n+1

2u(e) X2) es

2>%+ﬂ@km

2n+1

On the other hand, formula (2.11) gives

u(e1)
\Y% = A°X,
xea 2n+1
so that
u(e1) 2
X) = X“.
«X) =1

The fact thatv is symplectic gives the additional condition that

u(e1)

v =

The connection is thus determined by the two 1-fofhads. The vanishing of the torsion
gives the expression of the brackets of the vector fiejds
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We can now compute the action of the curvature endomorphism on the vectoefigids
two different ways: using the formulas above or using the fact that the curvature is of Ricci

type.
This yields two identities
3 uler) , 1 1 4
dg = -
=t T o 1o P T o e e
2
ds =2]/ /\/3— m€f/\€i+2&/\8,

where thee,{ are 1-forms so tha&i (ex) = 6,{ at each point. Using the formulas for the

bracket of vector fields we have
ded = 2u(eq) 1 4 ule1) »

3 2
*—2n+1e*/\e*—2n+le*/\e*+e*/\,3,

and substituting? A g in d yields

ule1) 5 2
d(s - = ,
<ﬂ 2n + 16*) 1"
which is impossible on a compact manifold. This contradiction tells usitimatist vanish
and hence tha¥ is locally symmetric.
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