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Abstract

We consider invariant symplectic connections∇ on homogeneous symplectic manifolds(M,ω)
with curvature of Ricci type. Such connections are solutions of a variational problem studied by
Bourgeois and Cahen, and provide an integrable almost complex structure on the bundle of almost
complex structures compatible with the symplectic structure. IfM is compact with finite fundamen-
tal group then(M,ω) is symplectomorphic toPn(C) with a multiple of its Kähler form and∇ is
affinely equivalent to the Levi-Civita connection. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The space of curvature tensors of symplectic connections on a symplectic manifold
(M,ω) of dimension 2n ≥ 4 splits under the action of the symplectic groupSp(2n,R)
as a direct sum of two subspaces on whichSp(2n,R) acts irreducibly [1,5,7]. For a given
curvature tensorRwe shall denote byE andW its projections onto these two subspaces. The
E-component is determined by the Ricci tensor of the connection. When theW -component
vanishes identically we say that the curvature is of Ricci type.
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author is Aspirant au Fonds National belge de la Recherche Scientifique.

∗ Corresponding author. Tel.:+32-2-650-5841; fax:+32-2-650-5867.
E-mail addresses:mcahen@ulb.ac.be (M. Cahen), sgutt@ulb.ac.be (S. Gutt), horowitz@ulb.ac.be (J. Horowitz),
j.rawnsley@warwick.ac.uk (J. Rawnsley).

0393-0440/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0393-0440(00)00058-9



M. Cahen et al. / Journal of Geometry and Physics 38 (2001) 140–151 141

The motivation for looking at such connections is twofold. They provide critical points
of a functional which has been introduced in [1] to select preferred symplectic connections,
andW = 0 is the integrability condition for an almost complex structure which a symplectic
connection determines on the total space of the bundleJ (M,ω)of almost complex structures
compatible with the symplectic structure [6,8,9].

The simplest framework in which one can study theW = 0 condition is the compact
homogeneous one. Our main result is the following theorem.

Theorem 1. Let(M,ω) be a compact homogeneous symplectic manifold with finite funda-
mental group. If(M,ω)admits a homogeneous symplectic connection∇ with Ricci-type cur-
vature then(M,ω) is symplectomorphic to(Pn(C), ω0),whereω0 is a multiple of the Kähler
form of the Fubini–Study metric, and∇ is affinely equivalent to the Levi-Civita connection.

When we do not impose any restriction on the fundamental group, we were only able to
prove the following theorem.

Theorem 2. Let (M,ω) be a compact homogeneous symplectic manifold of dimension 4.
If (M,ω) admits a homogeneous symplectic connection∇ with Ricci-type curvature then
∇ is locally symmetric.

In Section 2 we prove some general identities which hold for any symplectic connection
with Ricci-type curvature. In Section 3 we deduce some easy consequences of these iden-
tities in the homogeneous (respectively compact homogeneous) framework. In Section 4
we prove Theorem 1 in the simply connected case and show how to extend this to a finite
fundamental group. Finally, Section 5 is devoted to the proof of Theorem 2.

2. Ricci-type curvature

Let (M,ω) be a symplectic manifold and∇ be a symplectic connection (a torsion-free
connection onTM with ∇ω = 0). The curvature endomorphismR of ∇ is defined by

R(X, Y )Z = (∇X∇Y − ∇Y∇X − ∇[X,Y ])Z

for vector fieldsX, Y,Z onM. The symplectic curvature tensor

R(X, Y ;Z, T ) = ω(R(X, Y )Z, T )

is antisymmetric in its first two arguments, symmetric in its last two and satisfies the first
Bianchi identity∮

X,Y,Z

R(X, Y ;Z, T ) = 0,

where
∮

denotes the sum over the cyclic permutations of the listed set of elements. The
Ricci tensorr is the symmetric 2-tensor

r(X, Y ) = Trace[Z 7→ R(X,Z)Y ].
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R also obeys the second Bianchi identity
∮
X,Y,Z

(∇XR)(Y, Z) = 0.

The Ricci partE of the curvature tensor is given by

E(X, Y ;Z, T ) = −1

2(n+ 1)
[2ω(X, Y )r(Z, T )+ ω(X,Z)r(Y, T )

+ω(X, T )r(Y, Z)− ω(Y,Z)r(X, T )− ω(Y, T )r(X,Z)]. (2.1)

The curvature is of Ricci type whenR = E.

Lemma 1. Let (M,ω) be a symplectic manifold of dimension2n ≥ 4. If the curvature of
a symplectic connection∇ on M is of Ricci type then there is a 1-formu such that

(∇Xr)(Y, Z) = 1

2n+ 1
(ω(X, Y )u(Z)+ ω(X,Z)u(Y )). (2.2)

Conversely, if there is such a 1-formu then theW part of the curvature satisfies
∮
X,Y,Z

(∇XW)(Y,Z; T ,U) = 0. (2.3)

Proof. When the curvature is of Ricci type, the second Bianchi identity forR becomes
an identity forE. Sinceω is parallel, covariantly differentiating Eq. (2.1) and summing
cyclically, we get

0 =
∮
X,Y,Z

2ω(Y,Z)(∇Xr)(T , U)+ ω(Y, T )(∇Xr)(Z,U)
+ω(Y,U)(∇Xr)(Z, T )− ω(Z, T )(∇Xr)(Y,U)− ω(Z,U)(∇Xr)(Y, T ). (2.4)

Choose local frames{Va}2n
a=1, {Wa}2n

a=1 onM such thatω(Va,Wb) = δab. SubstituteY = Va

andZ = Wa in Eq. (2.4) and sum overa to obtain

0 = 2n(∇Xr)(T , U)− (∇T r)(X,U)− (∇Ur)(X, T )+ ω(X, T )
∑
a

(∇War)(Va, U)

+ω(X,U)
∑
a

(∇War)(Va, T ). (2.5)

If we cyclically permuteX, T ,U in Eq. (2.5) and sum we get

(2n− 2)
∮
X,T ,U

(∇Xr)(T , U) = 0, (2.6)

and sincen ≥ 2 we have∮
X,T ,U

(∇Xr)(T , U) = 0. (2.7)
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Using Eq. (2.7) in Eq. (2.5) gives

(2n+ 1)(∇Xr)(T , U)+ω(X, T )
∑
a

(∇War)(Va, U)+ω(X,U)
∑
a

(∇War)(Va, T )=0,

which is of the desired form if

u(X) = −
∑
a

(∇War)(Va,X).

Conversely, if one substitutes (2.2) into the covariant derivative of (2.1) and cyclically
sums then one obtains∮

X,Y,Z

(∇XE)(Y, Z, T ,U) = 0.

Combining this with the second Bianchi identity gives the second part of the Lemma.�

Corollary. A symplectic manifold with a symplectic connection whose curvature is of Ricci
type is locally symmetric if and only if the 1-formu, defined in the Lemma, vanishes.

Remark 1. It will be useful to have an equivalent form of formula (2.2). Denote byA the
linear endomorphism such that

r(X, Y ) = ω(X,AY). (2.8)

The symmetry ofr is equivalent to saying thatA is in the Lie algebra of the symplectic
group ofω. Denote byū the vector field such that

u = i(ū)ω, (2.9)

then (2.2) is equivalent to

∇XA = −1

2n+ 1
(X ⊗ u+ ū⊗ i(X)ω). (2.10)

Lemma 2. Let (M,ω) be a symplectic manifold with a symplectic connection∇ with
Ricci-type curvature. Then, keeping the above notation, the following identities hold:

1. There is a function b such that

∇u = − 1 + 2n

2(1 + n)

(2)
r + bω, (2.11)

wherer(2) is the 2-form

(2)
r (X, Y ) = ω(X,A2Y ). (2.12)

2. The differential of the function b is given by

db = 1

1 + n
i(ū)r. (2.13)



144 M. Cahen et al. / Journal of Geometry and Physics 38 (2001) 140–151

3. The covariant differential ofdb is given by

∇ db = 1

1 + n

[
− 1

1 + 2n
u⊗ u− 1 + 2n

2(1 + n)

(3)
r + br

]
, (2.14)

where

(3)
r (X, Y ) = ω(X,A3Y ). (2.15)

Proof. We can compute the action of the curvature on endomorphisms in two different
ways. On the one hand it is

R(X, Y ) · A= [R(X, Y ),A] = R(X, Y )A− AR(X, Y )

= − 1

2(n+ 1)
[X ⊗ ω(A2Y, .)− Y ⊗ ω(A2X, .)

+A2Y ⊗ ω(X, .)− A2X ⊗ ω(Y, .)].

On the other hand the curvature is of Ricci type so that (2.10) gives

R(X, Y ) · A = 1

2n+ 1
[X ⊗ ∇Y u− Y ⊗ ∇Xu+ ∇Y ū⊗ ω(X, .)− ∇Xū⊗ ω(Y, .)].

If we define an endomorphismB of TM by

BY= 2n+ 1

2(n+ 1)
A2Y + ∇Y ū,

then equality of the two right-hand sides yields

X ⊗ ω(BY, .)− Y ⊗ ω(BX, .)+ BY⊗ ω(X, .)− BX⊗ ω(Y, .) = 0,

whose only solution is

B = b Id.

This gives

∇Y u = − 2n+ 1

2(n+ 1)
ω(A2Y, .)+ bω(Y, .),

which is Eq. (2.11).
Antisymmetrising (2.11) we get

du = −2n+ 1

n+ 1

(2)
r + 2bω.

Taking the exterior derivative gives

0 = −2n+ 1

n+ 1
d
(2)
r + 2 db ∧ ω.
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But

d
(2)
r (X, Y, Z) =

∮
X,Y,Z

ω(∇XA2Y,Z) = − 1

2n+ 1

∮
X,Y,Z

ω(u(AY)X+ω(X,AY)ū, Z)

+ω(u(Y )AX+ ω(X, Y )Aū, Z) = 2

2n+ 1

∮
X,Y,Z

ω(X, Y )r(ū, Z).

Substituting[
− 1

n+ 1
r(ū, .)+ db

]
∧ ω = 0,

and in dimension 4 or higher this implies

db = 1

n+ 1
r(ū, .),

which is (2.13). Covariantly differentiating

(∇X db)(Y ) = 1

n+ 1
[(∇Xr)(ū, Y )+ r(∇Xū, Y )]

= 1

n+ 1

[
1

1 + 2n
ω(X, ū)u(Y )+ r

(
− 2n+ 1

2(n+ 1)
A2X + bX, Y

)]
,

which is (2.14). �

3. Homogeneous framework

Assume(M,ω) is aG-homogeneous symplectic manifold and∇ is aG-invariant sym-
plectic connection with Ricci-type curvature. If∇ is not locally symmetric, theG-invariant
1-formu is everywhere different from zero and the functionb is alsoG-invariant and hence
constant. Putting these two facts into (2.13) we see thatr as a bilinear form is necessarily
degenerate

r(ū, .) = 0. (3.1)

Also (2.14) implies

1

2n+ 1
u⊗ u+ 1 + 2n

2(1 + n)

(3)
r − br = 0, (3.2)

or equivalently

1

2n+ 1
ū⊗ u− 1 + 2n

2(1 + n)
A3 + bA = 0. (3.3)

ApplyingA to (3.3) and using (3.1)

− 1 + 2n

2(1 + n)
A4 + bA2 = 0. (3.4)

It follows that the only possible non-zero eigenvalues ofA are±√
(2(1 + n)/(1 + 2n))b

and so are real or imaginary.
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Lemma 3. If (M,ω) is a compact homogeneous symplectic manifold admitting a homo-
geneous symplectic connection∇ with Ricci-type curvature which is not locally symmetric
thenb = 0.

Proof. Recall that for any vector fieldX, Cartan’s identity gives

divXωn
def=LXωn = nd((i(X)ω) ∧ ωn−1),

and

LXω
n = (LX − ∇X)ωn = n(ω(∇ ·X, .)+ ω(.,∇ ·X)) ∧ ωn−1,

so that

divX = Trace[Z 7→ ∇ZX].

In particular, by (2.11)

div ū = − 2n+ 1

2(n+ 1)
TraceA2 + 2nb.

G-invariance implies that div̄u is constant. ButM compact with no boundary implies∫
M

div ūωn = 0 since the argument is exact; hence the constant is zero. Thus

b = 2n+ 1

4n(n+ 1)
TraceA2.

On the other hand, (3.4) implies thatA2 is a multiple of a projection and withA symplectic
this has even rank 2p say; using (3.1) we get 2p < 2n. Thus

TraceA2 = 4pb(1 + n)

1 + 2n
,

so

b = 2n+ 1

4n(n+ 1)
· 4pb(1 + n)

1 + 2n
= p

n
b,

and henceb = 0. �

It follows thatA4 = 0 soA is nilpotent; moreover (3.3) tells us thatA3 has rank 1.

Lemma 4. Let(M,ω) be a four-dimensional homogeneous symplectic manifold admitting
a homogeneous symplectic connection∇ with Ricci-type curvature which is not locally
symmetric. Let A be the endomorphism associated to the Ricci tensor. Then

1. either A is nilpotent, b 6= 0,A2 = 0, and A has rank 1 at any point;
2. or A is nilpotent, b = 0, andA3 has rank 1 at any point;
3. or A has a non-zero eigenvalue sob 6= 0.Then A admits a pair of non-zero eigenvalues of

opposite sign (real or imaginary) with multiplicity 1 and 0 is an eigenvalue of multiplicity
2 at any point. Furthermore, A has necessarily a nilpotent part.
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Proof. The dimension — at any pointx ∈ M — of the generalised 0 eigenspace ofA is
even and non-zero, so is 2 or 4. If it is 4 thenA is nilpotent andA4 = 0 in dimension 4.
Thus, by (3.3),bA2 = 0. If b 6= 0 thenA2 = 0 so, by (3.4),A has rank 1 at any point.
Otherwiseb = 0 andA3 has rank 1 at any point.

When the generalised 0 eigenspaceV0 is two-dimensional at any point, then
±√

(2(1 + n)/(1 + 2n))b are eigenvalues with multiplicity 1. Choose a globally defined
vector fieldv ∈ V0 so thatω(v, ū) = 1. SetAv = pū. Then

∇X(Av) = ∇X(pū) = (Xp)ū+ p

(
− 1 + 2n

2(1 + n)
A2X + bX

)
,

but it is also equal to

∇X(Av) = (∇XA)v + A(∇Xv) = − 1

1 + 2n
(Xu(v)+ ūω(X, v))+ A(∇Xv).

Observe thatω(A2X, ū) = ω(A(∇Xv), ū) = 0, so that

pω(bX, ū) = ω

(
− 1

1 + 2n
u(v)X, ū

)
= 1

1 + 2n
ω(X, ū).

Hencepb = 1/(1 + 2n) which implies thatp 6= 0. ThusA has a nilpotent part. �

4. Proof of Theorem 1

We first prove Theorem 1 in the simply connected case. It is standard that a compact
simply connected homogeneous symplectic manifold(M,ω) is symplectomorphic to a
coadjoint orbit of a simply connected compact semi-simple Lie groupG. Such a Lie group
G is a product of simple groups and the orbit is a product of orbits. We may throw away any
factors where the orbit is zero-dimensional as the remaining group will still act transitively.
A G-invariant symplectic connection∇ on such an orbit is compatible with the product
structure [2]. If the curvature of∇ is of Ricci type, then it was shown in [3] that the
curvature is zero when(M,ω,∇) is a product of more than one factor. But a non-trivial
compact coadjoint orbit of a simple Lie group does not admit a flat connection since it has
a non-zero Euler characteristic. It follows that we can assumeG is simple and(M,ω) is
a coadjoint orbit(O, ωO) with its Kirillov–Kostant–Souriau symplectic structure and with
an invariant symplectic connection∇ with curvature of Ricci type.

Further, the Euler characteristic of such an orbit is non-zero. If the vector fieldū were
non-zero, then invariance would imply that it is everywhere non-zero and this cannot happen.
Thusū = 0 and hence∇ is locally symmetric (∇R = 0).

Pick a pointξ0 ∈ O and construct a symmetric symplectic triple(l, σ,Ω) as follows: Let
a = {Rξ0(X, Y ) ∈ End(Tξ0O)|X, Y ∈ Tξ0O} andl = Tξ0O ⊕ a. The bracket is defined by

[X, Y ] = Rξ0(X, Y ), X, Y ∈ Tξ0O, (4.1)

[B,X] = BX, B ∈ a, X ∈ Tξ0O, (4.2)

[B,C] = BC− CB, B, C ∈ a, (4.3)
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σ by

σ = −IdTξ0O ⊕ Ida,

andΩ by

Ω(X + Y,X′ + Y ′) = ωξ0(X,X
′), X,X′ ∈ Tξ0, Y, Y ′ ∈ a.

Lemma 5. (l, σ,Ω) is, indeed, a symmetric symplectic triple.

Proof. There are two things to check to see thatl is a Lie algebra. Firstly, that the brackets
defined above belong tol. The only ones in doubt are the brackets of two elements ofa.
But a is in fact the linear infinitesimal holonomy. This follows since the latter is spanned by
the values of the curvature endomorphism and its covariant derivatives. The latter vanish
by the local symmetry condition.

The second thing to check is the Jacobi identity. Obviously this holds if all three elements
are ina since this is a Lie algebra. If all three are inTξ0O then [X, [Y,Z]] = −Rξ0(Y, Z)X
and the Jacobi identity is satisfied for these elements by the first Bianchi identity. When one
element is inTξ0O and two ina we have

[X, [B,C]] + [B, [C,X]] + [C, [X,B]] = −[B,C]X + BCX− CBX= 0.

Finally, if two elements are inTξ0O and one ina we have

[X, [Y,B]] + [Y, [B,X]] + [B, [X, Y ]]

= −Rξ0(X,BY)− Rξ0(BX, Y )+ BRξ0(X, Y )− Rξ0(X, Y )B = (B · Rξ0)(X, Y ),
whereB ·Rξ0 denotes the natural action of the holonomy Lie algebraa on curvature tensors.
But ∇R = 0 if and only ifB · Rξ0 = 0∀B ∈ a.

The other two properties follow immediately from the definitions. �

If L is the simply connected Lie group associated tol andK the Lie subgroup associated
to the subalgebraa thenK is the connected component of the fixed point set of the auto-
morphism ofL induced byσ andM1 = L/K is a simply connected symmetric space.Ω

induces a symplectic formω1 onM1 which is parallel for the canonical connection∇1.
Consider the pointξ0 ∈ M = O and the pointξ1 = eK ∈ M1. There is a linear

isomorphismφ from the tangent spaceTξ0M to the tangent spaceTξ1M1 so that

φ(R0(X, Y )Z) = R1(φX, φY )φZ.

This implies [4, p. 259, thm. 7.2] that there exists an affine symplectic diffeomorphismψ

of a neighbourhoodU0 of ξ0 inO onto a neighbourhoodU1 of ξ1 inM1 such thatψ∗ξ0 = φ.

Both (O, ωO,∇) and(M1, ω1,∇1) are real analytic, as isψ , andO is simply connected
whilst∇1 is complete. Hence [4, p. 252, thm. 6.1] there exists a unique affine mapψ̃ : O→
M1 such thatψ̃ |U0 = ψ . This mapψ̃ is symplectic since it is an analytic extension of the map
ψ which is symplectic. Symplectic maps are immersions, and hence local diffeomorphisms
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when the dimensions are equal as they are in this case. Henceψ̃(O) is open. On the other
hand,O is compact, sõψ(O) is compact and thus closed. Henceψ̃ is surjective. It follows
thatM1 is compact.

From the preceding arguments we see that(M1, ω1,∇1) is a compact simply connected
symmetric symplectic space whose curvature is of Ricci type. The only such space isPn(C)

with a multiple of its standard Kähler formω0 and the Levi-Civita connection∇0 of the
Fubini–Study metric. SinceO andM1 are both simply connected they are diffeomorphic
and hence we have proved Theorem 1 in the simply connected case.

Next we consider the case whereM has a finite fundamental group,(M,ω) is
G-homogeneous symplectic with aG-invariant symplectic connection∇ with curvature
of Ricci type. Then the simply connected covering spaceM̃ is compact and carries such
dataω̃, ∇̃ for the simply connected covering groupG̃.

It follows that (M̃, ω̃, ∇̃) is diffeomorphic to(Pn(C), ω0,∇0) and hence thatM is dif-
feomorphic toPn(C)/Γ , whereΓ is a discrete subgroup ofPU(n + 1) acting properly
discontinuously onPn(C). But non-trivial elements ofPU(n+1) always have fixed points,
soΓ must be trivial. This proves Theorem 1.

5. Proof of Theorem 2

We now proceed to give the proof of Theorem 2 indicating along the way why we restrict
ourselves to dimension 4 and why we only obtain a local result.

Recall that when(M,ω) is homogeneous and admits a non-locally symmetric invariant
symplectic connection with Ricci-type curvature we have the non-zero vector fieldū and
the Ricci endomorphism satisfies

Aū = 0,
1

1 + 2n
ū⊗ u− 1 + 2n

2(1 + n)
A3 + bA = 0,

1 + 2n

2(1 + n)
A4 − bA2 = 0.

(5.1)

Furthermore, ifM is compact Lemma 3 tells us thatb = 0 so thatA4 = 0, andA3 has
rank 1:

A3 = 2(1 + n)

(1 + 2n)2
ū⊗ u.

The 1-formu is everywhere non-zero so there is a globally defined vector fielde1 with u(e1)

everywhere6= 0. The vector fieldse1, e2 = Ae1, e3 = A2e1, e4 = A3e1 form at each point
x ∈ M a basis of a four-dimensional subspaceVx of the tangent spaceTxM. Furthermore,
by Eq. (5.1)

e4 = 2(1 + n)

(1 + 2n)2
u(e1)ū.

If we choose the vector fielde1 so thatω(e1, e4) = ε with ε2 = 1, we get−(2(1 + n)/

(1 + 2n)2)(u(e1))
2 = ε so thatε = −1 and(u(e1))

2 = (1 + 2n)2/2(1 + n) so that
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ū = u(e1)e4. Remark that we can always assume thatω(e1, e2) = 0 (by adding toe1 a
multiple of e3). So the symplectic form restricted toVx writes in the chosen basis




0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


 .

The tangent space at each pointx ∈ M writes

TxM = Vx ⊕ V ′
x,

whereV ′
x is theωx-orthogonal toVx ; it is stable underA and, sinceA3 has rank 1,A3|V ′

x
= 0

but this is not enough to describe the behaviour ofA onV ′
x .

From now on, we restrict ourselves to the four-dimensional case. We define 1-forms
α, β, γ, δ such that

∇Xe1 = α(X)e1 + β(X)e2 + γ (X)e3 + δ(X)e4.

Using formula (2.10) for∇A (i.e.∇XA = (−1/(2n+ 1))(X⊗ u+ u(e1)e4 ⊗ i(X)ω)) we
obtain

∇Xe2 = −u(e1)

2n+ 1
X1e1 +

(
α(X)− u(e1)

2n+ 1
X2

)
e2

+
(
β(X)− u(e1)

2n+ 1
X3

)
e3 +

(
γ (X)− 2u(e1)

2n+ 1
X4

)
e4,

∇Xe3 = −u(e1)

2n+ 1
X1e2 +

(
α(X)− u(e1)

2n+ 1
X2

)
e3 + β(X)e4,

∇Xe4 = −u(e1)

2n+ 1
X1e3 +

(
α(X)− 2u(e1)

2n+ 1
X2

)
e4.

On the other hand, formula (2.11) gives

∇Xe4 = −u(e1)

2n+ 1
A2X,

so that

α(X) = u(e1)

2n+ 1
X2.

The fact that∇ is symplectic gives the additional condition that

γ (X) = u(e1)

2n+ 1
X4.

The connection is thus determined by the two 1-formsβ andδ. The vanishing of the torsion
gives the expression of the brackets of the vector fieldsej .
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We can now compute the action of the curvature endomorphism on the vector fieldsej in
two different ways: using the formulas above or using the fact that the curvature is of Ricci
type.

This yields two identities

dβ = 3

2(n+ 1)
ω + u(e1)

2n+ 1
e2
∗ ∧ β + 1

2(n+ 1)
e1
∗ ∧ e4

∗,

dδ = 2γ ∧ β − 2

2(n+ 1)
e3
∗ ∧ e4

∗ + 2α ∧ δ,

where theej∗ are 1-forms so thatej∗(ek) = δ
j
k at each point. Using the formulas for the

bracket of vector fields we have

de3
∗ = 2u(e1)

2n+ 1
e1
∗ ∧ e4

∗ − u(e1)

2n+ 1
e2
∗ ∧ e3

∗ + e2
∗ ∧ β,

and substitutinge2∗ ∧ β in dβ yields

d

(
β − u(e1)

2n+ 1
e3
∗

)
= 2

n+ 1
ω,

which is impossible on a compact manifold. This contradiction tells us thatu must vanish
and hence that∇ is locally symmetric.
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